

Nguyen Thua Duong

5rd EMship cycle: October 2014 – February 2016

Master Thesis

Assessment of the Conditions of Medium-size Shipbuilding Company to Build Offshore Structures

Supervisor: Professor Tadeusz Graczyk, West Pomeranian University of Technology, Szczecin Internship tutor: Mr. Michał Gołębiowski, Finomar Spółka z o.o., Szczecin, Poland Reviewer: Professor R. BRONSART, University of Rostock, Rostock, Germany

Szczecin, January 2016

Aim of this thesis

- 1. What is the full potential of medium-sized shipbuilding company?
- 2. What is the recommendation to improve the competitiveness of this company?

Method

Qualitative method was used:

Only approved literature from leading experts

Practical work documents in real construction period (production drawings and pictures)

Academic books, previous research reports, articles

Presentation plan

Business challenges

Technical challenges

Location

Collaboration

Affected factors

Labour

Building Process

Products

Business challenges

Economic crisis

Competitors

Labor difficulty

Business challenges Economic crisis Competitors Labor difficulty Dirty Difficult Dangerous

Level

| Early 19 |
| Manual of the control of the

New Orders by Main Shipbuilding Areas

Competitors

Labor difficulty

Reasons for the difficulties in recruiting qualified workforce in 2008

3-D stands for:

Dirty Difficult Dangerous

Technical challenges

Level	Description
1	Early 1960s – welded hulls, small cranes (<50 t), multiple open berths, Manual operating systems.
2	Late 1960s/ early 1970s, larger cranes (<250 t), some mechanization and pre-outfitting, numerical controlled metal cutting machines. Some computerized systems.
3	Late 1970s, large capacity cranes (>350 t). High degree of mechanization and use of computers. Block manufacturing shops.
4	Technology advances of the middle 1980s. Generally large docks, protected microclimate zones, High lifting capacity of Goliath cranes (>800 t)
5	1990s, with automation, integration of operating systems, use of CAD, CAM, CAPP. Increased automation and robotics in welding, pipe shops.
6	2000 to present: large, renovated and some completely covered shipyards, large grand and ultra blocks to 3000 t, mainly robotics for welding and part assembly.

Level of
Finnoval
strong F
Strong
Efficier
Specia

3 stakeholders

Ship Owner Hotel

Factory

Catering

Floating vessel

Navigation & Shipping

Entertainment & Leisure

Shipyard

Stability

Propulsion

Manoeuvrability

Structural integrity

Energy production

Production scheduling

Components integration

Class and Flag Society

Ship

Quality

Environment

Health & Safety

Social Responsability

Level	Description
1	Early 1960s – welded hulls, small cranes (<50 t), multiple open berths, Manual operating systems.
2	Late 1960s/early 1970s, larger cranes (<250 t), some mechanization and pre-outfitting, numerical controlled metal cutting machines. Some computerized systems.
3	Late 1970s, large capacity cranes (>350 t). High degree of mechanization and use of computers. Block manufacturing shops.
4	Technology advances of the middle 1980s. Generally large docks, protected microclimate zones, High lifting capacity of Goliath cranes (>800 t)
5	1990s, with automation, integration of operating systems, use of CAD, CAM, CAPP Increased automation and robotics in welding, pipe shops.
6	2000 to present: large, renovated and some completely covered shipyards, large grand and ultra blocks to 3000 t, mainly robotics for welding and part assembly.

Summary

Strengths of EU shipyards

- · Level of innovation
- Innovative SMEs (Small and medium-sized enterprises) and strong position of marine equipment industry
- Strong connections between shipyards and marine equipment suppliers
- Efficiency
- Specialization in niche markets

Weaknesses

- Cost levels (wage levels and steel prices)
- · Access to skilled labour
- · Access to finance
- Potential difficulties in knowledge protection
- Fragmented government responses

Location of shipyard

- investment
- government policy (tax, support program)
- natural environment (temperature, sunlight hour)

from Prague

CLUSTER

- registered on the Map
- o positively self-evaluated against Standards

Labour resource

Figure 8: EU-14 shipbuilding workforce sorted by basic education level

Migration of Polish workers

Overheads 27%

Ship Construction Process Fabrication: subassemblies Material Design procurement Surface preparation **Fabrication: Painting** units Outfitting **Testing Delivery**

The cost breakdown for new construction of ship

The cost breakdown for new construction of ship

Mainly for steel fabication

- Cutting
- Bending
- Welding
- Painting

Cutting

Plate

- Wide range of thickness
- Excellent quality of cutting edges
- Very narrow cutting jet
- High speed of cutting

mign sheen of entring

Bending

Plate rolls

Heat line bending

Cold frame bending

laing

Plate rolls

at line bending

Heat line bending

Cold frame bending

Chalk line

mude mino pomums

Cold frame bending

Prezi

Welding

Submerged arc welding (SAW)

- High deposition rates
- Deep weld penetration
- High speed welding
- High mechanization

Gas tungsten arc welding (GTAW)

Weld faults

Erection

Painting

Surface preparation

Painting

Equipment

Launching

Products

